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Abstract

Measuring the welfare cost of inflation requires determining to what degree
observed movements in relative prices reflect firms’ idiosyncratic fundamentals.
This paper introduces a new empirical approach to measuring the cost of infla-
tion in sticky-price models: conditioning observed price changes on vintage, or
the duration of price spell. Theoretically, we demonstrate that vintage-conditional
data is more informative than typically used cross-sectional data. In particular,
the vintage-conditional frequency and variance of price changes are informative
about the persistence of idiosyncratic shocks to firms” fundamentals. We docu-
ment vintage moments using the micro-price data underlying the UK CPI and
Belgian PPI. Within narrow product categories, price changes become less fre-
quent and less dispersed as more time passes since the previous price change.
Estimating a quantitative sticky-price model to match these vintage moments in-
dicates that idiosyncratic shocks are smaller and more transitory compared to a
baseline estimation matching cross-sectional moments. In the model that matches
vintage moments, the welfare cost of inflation is 1.3 percentage points higher
compared to the baseline, and this welfare cost increases 4 times more quickly
as inflation rises. We validate our estimation procedure using linked data on the
output, costs and prices of Belgian manufacturing firms.
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1 Introduction

Nominal rigidities are the primary friction of workhorse models used to study mon-
etary policy and inflation. The welfare cost of inflation in these models is determined
by the gaps between firms’ listed prices and firms’ ideal prices — those that would
maximize profits in a flexible price benchmark. Properly measuring this welfare cost
requires decomposing observed price changes into an efficient component driven by
movements in ideal prices, and a costly component driven by nominal rigidities. This
is a challenge in practice, as neither ideal prices nor nominal rigidities are directly
observed. Measurement typically requires estimating a model of firm price setting
to match moments of observed data on prices, and calculating the cost of inflation
implied by that estimated model.

This paper presents a new empirical approach to estimating models of firm price
setting: matching vintage-conditional moments. These are moments derived from
distributions of price changes conditioned on their duration of price spell, which we
refer to as vintage.! We demonstrate with an illustrative example that vintage-
conditional moments are more informative for estimating sticky-price models than
the typically used moments derived from a single cross-section of price changes. In
particular, vintage moments better identify how firms’ ideal prices evolve. Next, we
document systematic empirical patterns in vintage moments that are not reproduced
in previously estimated sticky-price models. Finally, we estimate a standard New
Keynesian general equilibrium model to match vintage moments and calculate the
associated welfare cost of inflation. We compare this welfare cost to that of a baseline
model, which is estimated to match commonly used cross-sectional moments.

We begin in a stylized model. Firms minimize the present-discounted quadratic
distance between their price and their ideal price, subject to nominal rigidities in
the form of random menu costs. Ideal prices follow a stochastic process with id-
iosyncratic shocks. This stripped-down setup spotlights the core estimation prob-
lem: jointly determining the distribution of menu costs and the stochastic process
for idiosyncratic shocks when only prices are observed. It is thus an ideal setting to
illustrate how and why vintage-conditional moments assist model estimation.

We demonstrate the usefulness of vintage-conditional moments using a simple
example, where menu costs are exponentially distributed and shocks follow an AR(1)
process with persistence p. Comparing the opposing cases of p = 1 and p = 0, we
show that both cases can exactly match cross-sectional data on the overall frequency

and variance of price changes. Furthermore, the cross-sectional distributions of price

For example, if a product changes its price two months in a row, the second price change would
have a vintage of one. If a product changes its price in January and then in April, the second price
change would have a vintage of three.



changes implied by each case are nearly identical. On the other hand, comparing
moments across vintages provides a simple heuristic for distinguishing between the
two cases. When p = 1, the vintage-conditional probability of price adjustment and
vintage-conditional variance of price changes are monotonically increasing in vintage,
while both are monotonically decreasing in vintage when p = 0. We demonstrate
numerically that similar patterns also hold for p € (0,1).

Cross-sectional data alone performs poorly because multiple underlying firm states
may map to the same price change. Using vintage data is beneficial because it adds
information about how long it takes firms to select into changing prices. Differences
between the distribution of price changes at low vintages, when firms have been hit
by few idiosyncratic shocks, and high vintages, when firms have been hit by many
such shocks, are intuitively informative about the stochastic process by which shocks
evolve.

Next, we document the behavior of vintage-conditional moments in the panel of
retailers” prices underlying the United Kingdom’s Consumer Price Index. We high-
light two systematic patterns that previously estimated models do not reproduce.
First, the probability of price adjustment declines overall with vintage, with occa-
sional spikes at 4- and 12-month intervals. Second, depending on the product, the
variance of price changes either declines monotonically with vintage, or exhibits a
single early peak at a vintage of 2-4 months before declining. Through the lens of our
stylized model, both of these facts indicate that idiosyncratic shocks are transitory.

Then, to demonstrate the impact of using vintage conditional moments in esti-
mation, we move to a New Keynesian general equilibrium setting that more closely
mirrors the types of quantitative models used for policymaking. Firms compete mo-
nopolistically a la CES and face idiosyncratic shocks to productivity that follow an
AR(1) process. Technology is linear in labor and nominal wages grow at a constant
rate of inflation. In order to change prices, firms must pay a random menu cost in
units of labor, which is distributed exponentially.

We estimate this model twice: once to match cross-sectional moments that are typ-
ically targeted in such a procedure, and once to match vintage-conditional moments.
When matching the vintage moments, we recover much less persistent idiosyncratic
productivity shocks (a monthly autocorrelation of .24 as opposed to .94) with smaller
innovations, as well as lower average menu costs compared to when we match cross-
sectional moments.

For each set of estimated parameters, we then solve the quantitative model and
compute the implied welfare loss at various rates of steady-state inflation. At the
common inflation target of 2%, the model-implied welfare cost of inflation is 1.3 per-

centage points higher when using the vintage parameters compared to when using



the cross-section parameters. This welfare cost increases at a 4 times faster rate as
inflation rises when using the vintage parameters compared to the cross-sectional pa-
rameters. The level of welfare loss is larger because firms react less to idiosyncratic
productivity shocks, understanding that those movements are temporary.

Finally, we exploit a dataset linking Belgian manufacturing firms’ costs, produc-
tion, and prices to validate our estimation procedure. For each Belgian manufacturing
sector, we estimate a process for ideal prices using cost and production data. We com-
pare the parameters of these processes to the ones we estimate in the model using
vintage moments, and validate that vintage moments recover reasonable values for

the autocorrelation of firm productivity shocks.

Related Literature. Our paper primarily contributes to a literature concerning how
to estimate sticky-price models using micro-price data. Models with menu costs
are primarily disciplined by matching the cross-section of price changes (Nakamura
and Steinsson, 2008, 2010). Analytical mappings between model primitives and price
change data can be derived in particular settings (Alvarez and Lippi, 2014; Alvarez et
al., 2016). Notably, Alvarez et al. (2021) show how to identify the distribution of ran-
dom menu costs that rationalizes observed price changes, provided that idiosyncratic
shocks follow a random walk.

Our contribution is to introduce vintage-conditional moments as an important
feature of micro-price data to match in model estimation. Matching these moments
matters especially in the case of stationary idiosyncratic shocks.

Second, we contribute to a literature measuring the cost of inflation in sticky-
price models. Nakamura et al. (2018) demonstrate how the nature of price stickiness
impacts the welfare cost of inflation, while Golosov and Lucas (2007) highlight the
size of shocks to firms’ ideal prices and Midrigan (2011) highlights the shape of that
shock distribution as playing major roles. Others attempt to empirically determine
the cost of inflation by using correlations between the inflation rate and dispersion
in price changes (Lach and Tsiddon, 1992) or dispersion in prices (Sheremirov, 2020),
or by exploiting varying trends in relative prices across products (Adam and Weber,
2023; Adam et al., 2023).

We contribute to this literature by demonstrating that the persistence of shocks to
ideal prices is an important determinant of the cost of inflation. In particular, when
shocks to ideal prices are more transitory, the welfare cost of inflation implied by
sticky-price models is larger and increases more quickly as inflation rises.

Additionally, we connect to a literature documenting dynamic features of micro-
price data.> In both old surveys (Klenow and Malin, 2010) and recent papers de-

2We call vintage moments “dynamic” in these sense that they exploit variation over time within a
panel unit. One can also exploit time variation by examining how the cross-section of price changes
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scribing micro-price data (Gautier et al., 2024) these features receive little attention.
Vintage-conditional hazard rates are the exception — they have been documented and
are found to decrease in vintage (Klenow and Kryvtsov, 2008; Nakamura and Steins-
son, 2008; Campbell and Eden, 2014). In the same UK CPI micro-price data we use,
Bunn and Ellis (2012b,a) document facts concerning vintage-conditional hazard rates
and sizes of price changes.

Our work adds to the evidence that hazard rates decline in vintage, and we doc-
ument a new fact that the vintage-conditional variance of price changes declines in
vintage. We also document these features in a new micro-price dataset that underlies
the Belgian producer price index.

Finally, we contribute to literature that studies sticky-price models with linked
tirm-level cost and price data. These settings are few and far between, but are power-
ful as observing costs allows one to construct a proxy for firms’ ideal prices.® Eichen-
baum et al. (2011) use linked profit, price and quantity data for supermarkets to ex-
amine synchronicity between changes in prices and changes in costs. More recently,
Gagliardone et al. (2023) and Gagliardone et al. (2025) use linked cost and price data
for Belgian manufacturers to measure state-dependence in firm pricing policies and
the slope of the Phillips curve.

Recognizing that panels of firms” prices are often observed but linked costs are
rare, our contribution is to use cost data to inform what features in a panel of firm
prices are important. Specifically, we validate that vintage-conditional moments are

particularly informative about the how firms’ costs stochastically evolve.

The rest of the paper is organized as follows. Section 2 presents a stylized model
of firm price setting, and provides intuition for the usefulness of vintage-conditional
moments. Section 3 documents the behavior of vintage-conditional moments in the
data underlying the UK CPL. Section 4 presents the benefit of using vintage moments
for estimation and its implications for the welfare cost of inflation, while Section 5
validates our estimation procedure using linked cost and price data from Belgium.

Section 6 concludes.

2 Theoretical Framework

Our theoretical framework is a standard discrete-time, random menu cost model with

idiosyncratic shocks in the tradition of Caballero and Engel (1993). This framework

evolves over the business cycle, as in Gagnon (2009), Vavra (2013) and Berger and Vavra (2018).

3 Another way to proxy for ideal prices is to study either time periods in which policy actions alter
costs, or industries in which a portion of marginal cost can be observed (Nakamura and Zerom, 2009;
Gautier et al., 2023). While more common, in these approaches the observed shocks to ideal prices are
the same across a set of firms, rather than idiosyncratic and uncorrelated across firms.
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contains the essential features necessary to highlight the core difficulty in estimating
models of firm price setting with menu costs, yet remains general enough to nest

most typical specifications of such models.

2.1 Setup.

Consider a measure 1 continuum of firms indexed by i, living in discrete time. These
tirms face a dynamic, forward looking price setting problem subject to price setting
frictions in the form of random menu costs.

Following Alvarez et al. (2016), we model a firm’s per-period loss as B(p;; — p};)*:
a quadratic function of the deviation between its current log price, p;;, and its “ideal”
log price, pj;. This quadratic loss function can be microfounded as a second order
approximation of firm profits around pj;, normalized by the firm’s non-stochastic
steady state profits. In this quadratic approximation, B represents the curvature of the
firm’s profit function and the ideal price represents the firm'’s static profit maximizing
price.

We model ideal prices p;, as composed of a firm fixed effect, an aggregate com-
ponent which follows a deterministic trend, and an idiosyncratic component which

evolves either by some first-order Markov process.

Pi=rot+ L+ i

aggregate

idiosyncratic
component

component

The trend 7 reflects the aggregate inflation rate, and the idiosyncratic component
a; reflects movements to firm-specific supply and demand. This idiosyncratic shock
evolves according to G(aj|a;—1), the conditional CDF of a;; given a;;_1. We assume
this process is either a martingale, or stationary with an unconditional mean of zero.
This admits the two most commonly used processes for idiosyncratic shocks — a
random walk and an AR(1) — as well as any finite-state first order Markov process.
We do not permit aggregate shocks to ideal prices for expositional simplicity, but they
can be accommodated.*

We model nominal frictions as random menu costs, x;;, drawn independently over
time and across firms from distribution H(x). This admits common pricing frictions,
such as the Calvo friction, a fixed menu cost as in Golosov and Lucas (2007), or the
Calvo-plus friction of Nakamura and Steinsson (2010). It rules out specifications in
which firms” menu costs are serially correlated, or in which the distribution of menu

costs is time dependent, such as Taylor pricing.

4This specification as written also assumes that state a is a scalar, but we can easily extend to a
scalar-valued function of some state vector that follows a Markov process.



Firm problem. At the start of each period, the firm observes its menu cost draw and
its new ideal price. The firm then decides whether to pay the menu cost and update
its price, or leave its price unchanged.

We define a firm’s price gap, as x;; = pi—1 — pj;- With this, we can write the firm’s

value function in recursive form
V(x,a,x) =min {sz +BE [V (x+a—mn—d,d,«)|x,a],
K+mxinBX2 +BE [V (x+a—mn—a,d,«)|x,a },
a' ~ G(d'la), x~ H(x).
where the law of motion for price gaps is inherited from the law of motion for ideal
prices, and setting a new price is equivalent to choosing a new price gap.’

For a firm with state (x,a) that selects into changing its price, optimal reset gap ¥
is determined by the FOC

oV
2Bx + BE | = (x+a—m—da,d,«x)|a| =0.

We cannot write a closed form expression for ¥ at this level of generality. However,
we can see that ¥ is a function only of the current idiosyncratic shock, a. We therefore
define the reset gap policy function %(a) as the solution to this FOC and V¢(a) as the

expected value of changing price:
V¢(a) = Bx(a)* + BE[V (X, d’,x)|%(a), a]

We similarly define the expected value of not changing price for a firm with state
(x,a):
V"(x,a) = Bx* + BE[V (x',d’,x)|x, a].

This lets us write the adjustment hazard function, or the probability of a firm with

state (x,a) changing its price, as

A(x,a) = Pr(k+V(a) <V"(x,a))
=H((V"(x,a) — Va)).

Note that the probability of price adjustment is a function of both the firm’s price gap
and the realization of the idiosyncratic state.

SNote that in cases where idiosyncratic shocks a follow a martingale, the value function can be
written in terms of just price gap x as a state, as can subsequent derivations of stationary distributions
and hazard functions.



The primary object of interest in this model is the distribution of firm states after
price change decisions are made: f(x,a). This object, which we call the ex-post dis-
tribution of firm states, describes the size of all price gaps in the economy, and in a
richer model would map to welfare loss. It is closely related to the ex-ante distribution
of firms states from before price change decisions are made, denoted f(x,a). The two

of them are defined together as follows:

F0) = (1= Al a) flxa) +6o(x = %(a) [ Aly,a)f(y,a)dy,

. -~ —
- (o]

. N
non price-changers ,V
price changers

f(x,a) = /OO gda)f(x' —a+m+ad, a)da.

¢(a’|a) is the PDF of idiosyncratic state a’ conditional on previous state 4, and
do(+) is the Dirac delta function.

These distributions depend primarily on two objects: the stochastic process for
idiosyncratic states, and the distribution of menu costs. The goal is therefore to
estimate the parameters of these two functions when only panel data on the prices
set by firms are observed. When faced with this estimation problem, the literature
typically only considers two features of these data to match: the frequency of price
changes, and the cross-sectional distribution of price changes. We illustrate that there

is a superior alternative to these cross-sectional data.

2.2 A simple example.

Consider a simple example in which 7 = 0, and B = 0. Suppose that idiosyncratic
shocks follow an AR(1) process with persistence p and normal innovations, and that

random menu costs are exponentially distributed.®

a' — pa

G(a’|a)=q>( - ) H(K):l_eXp<_%>

To best highlight our key message, we focus on two extreme cases: a permanent

shocks economy in which p = 1, and a transitory shocks economy in which p = 0.
Given a panel of prices, we ask which features of the data best differentiate between
the permanent shocks economy and the transitory shocks economy?

Each economy has two free parameters: ¢ and K. It is standard practice for sticky-

price models to match the frequency of price changes and some notion of the size of

®These are reasonable assumptions, with the exception of B = 0. Exponentially distributed menu
costs produce empirically reasonable distributions of price changes and 7= = 0 is a good approximation
of a low inflation environment. It is strong to assume firms are myopic with = 0, but necessary for
some analytical expressions we derive. The assumption of myopia will later be relaxed.



price changes. We show that for each economy, we can analytically map the frequency

of price changes and the variance of price changes to the two free parameters.

Proposition 1. Given data on the frequency of price changes, A, and the variance of price

changes Var(Ap):

* There exists unique {0y, K,} such that the frequency and variance of price changes
implied by the permanent shocks model exactly match these data.

e There exists unique {0y, K;} such that the frequency and variance of price changes

implied by the transitory shocks model exactly match these data.

Even though the two economies feature extremely different processes for ideal
prices, both can match these commonly used moments. If we restrict ourselves to
looking at the cross-section of price changes, it is unclear which additional feature
of that distribution should be used to distinguish the two economies. While we can
analytically demonstrate that the permanent and transitory shocks economies imply
different cross-sectional distributions of price changes, no particular moment of those
distributions stands out. This can be seen in in the left panel of Figure 1, which plots

an example of those two model-implied cross-sections.”

The two do not perfectly
coincide, but it is non-obvious how to harness the gaps between them.

A better method is to move beyond the cross-section of price changes. We propose
including vintage, or the number of periods since a firm last changed its price, as
an observable. This exploits information in the panel of prices that cross-sectional
data ignores. We examine vintage-conditional analogues of the moments already
used: vintage-conditional hazard rates, or probabilities of price change, and vintage-
conditional variances of price changes. Given these vintage-conditional moments, we

prove that there is a simple heuristic for telling the two economies apart.
Proposition 2.

* In the permanent shocks model, the vintage-conditional hazard rate and the vintage-
conditional variance of price changes are both monotonically increasing in vintage.

* In the transitory shocks model, the vintage-conditional hazard rate and the vintage-

conditional variance of price changes are both monotonically decreasing in vintage.

The intuition for these results is as follows. In the permanent shocks model,
all price changing firms set their price gaps to ¥ = 0. As shocks are permanent,
the distribution of future price gaps is centered at 0 for every firm, and spreads

out as shocks accumulate over time. This means the distribution of realized price

"These are constructed to have frequency of price changes equal to .088 and variance of price
changes equal to .025, which correspond to those statistics in micro-data underlying the UK CPL
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gaps across firms becomes more dispersed as time passes. Firms in the tails of this
distribution are more likely to change their price, and make larger price changes
when they do. So, as vintage increases, the tails of the price gap distribution become
relatively fatter, which leads to both more frequent and larger price changes.

The machinery of the transitory shocks model is more subtle. We explain it in
two steps. All price changing firms set their price gaps to ¥ = 0. As shocks are
transitory, the distribution of future price gaps is constant for every firm. Suppose
for the moment that this distribution is centered at 0 for every firm. If this were the
case, the distribution of realized price gaps across firms would be the same over time.
As a result, the hazard rate and variance of price changes would be constant across
vintage.

In actuality, the distribution of future price gaps is not centered at 0 for every
firm. It is instead centered around each firm’s idiosyncratic shock when it originally
changed price. This creates a selection effect. Firms with an extreme shock are likely
to immediately face a large movement in their price gap and change their price. Over
time, the remaining firms become those with less extreme initial shocks. Due to
this effect, the distribution of realized price gaps across firms becomes less dispersed
as time passes. So, as vintage increases, the tails of the price gap distribution get
relatively smaller, which leads to both less frequent and smaller price changes.

The right panel of Figure 1 plots the model-implied vintage-conditional variances
of price changes, for vintages of 12 months or fewer. The model-implied vintage-
conditional hazard rates follow similar profiles (see Appendix C.1). The difference
between the two economies is stark, and clear to the eye. Vintage-conditional mo-

ments are highly informative for differentiating between these two economies.
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Figure 1: Cross-sections vs vintage-conditional variances

The left panel plots example cross-sections of price changes for the permanent and transitory shocks economies. The right
panel plots the vintage-conditional variance of price changes against vintage for the same two economies.

We now show that vintage-conditional moments are also informative in a less styl-
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ized setting. In particular, we relax the assumption that firms are myopic and allow
for non-extreme values of the AR parameter, p. We set realistic values of monthly dis-
count rate p = (.96)ﬁ and inflation rate 77 = .0017 (roughly 2% annualized). Then,
for various fixed values of p € (0,1), we select K and ¢ to match frequency of price
changes A = .088 and variance of price changes Var(Ap) = .025. These correspond to
the aggregate frequency and variance of price changes in the micro-data underlying
the United Kingdom’s Consumer Price Index.

Given these parameters, we then solve and simulate the models to find the im-
plied cross-sectional distribution of price changes, and profiles of vintage-conditional
hazard rates and variances. For selected values of p, Figure 2 plots simulated cross-
sectional distributions of price changes (left), and profiles of vintage-conditional vari-
ances (right). As with the extreme cases, the simulated cross-sectional distributions

differ, but the differences are small, while the profiles of vintage-conditional variances

vary widely.
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Figure 2: Simulated price change cross-sections

The left panel plots simulated cross-sections of price changes in the economy for selected AR coefficients. The right panel plots
the vintage-conditional variance of price changes against vintage for the same economies.

Furthermore, the profiles of the simulated vintage moments mirror the theoretical
results from the extreme cases. As p approaches 0 and shocks become more transitory,
the variance of prices changes approaches a monotonically decreasing profile. As p
approaches 1 and shocks become more permanent, the variance of price changes ap-
proaches a monotonically increasing profile. These patterns are also produced in the
vintage-conditional hazard rates (see Appendix C.1). This reinforces the informative-
ness of vintage-conditional moments, as well as the heuristic of slope for determining

whether shocks are permanent or transitory.
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2.3 Identifying model primitives.

Vintage-conditional data appear to be more effective than cross-sectional data at
identifying the ideal price process. In some sense, this is not surprising. Vintage-
conditional data contains information about both the size of price changes and the
duration of price spells, whereas cross-sectional data only contains information about
the size of price changes. Data that includes vintage intuitively is strictly more infor-
mative. However, to understand why vintage data are useful specifically for identify-
ing the ideal price process, it helps to look at the model-implied cross-sectional and
vintage-conditional price change distributions.

In the model, a firm with ex-ante state (x,a) changes price with probability
A(x,a). The model-implied frequency of price changes is therefore the average of

A(x,a) over the stationary distribution of ex-ante firm states, f(x,a),

A= / / f(x,a)dx da

When a firm with state (x,a) changes its price, the size of that price change is
Ap(x,a) = %(a) — x. The model-implied cross-sectional distribution of price changes

is therefore

a(8p) = 5 [~ A(x(a) — p,a)f (x(a) — Ap,a)da

When %(a) is non-constant, there is no one-to-one mapping between the size of a

price change and the underlying state of a firm.®

This is why the cross-section of
price changes contains an integration over idiosyncratic states. In this case, the size
of price changes alone cannot distinguish whether a price change is driven by the
current shock realization, a, or the accumulated price gaps from shock realizations,
x. As a result, differing stochastic processes for a can generate similar cross-sectional
data.

Using vintage-conditional moments ameliorates this issue. Defining 7 as vintage,
with T = 0 representing firms that just changed their price in the current period, we

have the hazard rate and distribution of price changes, conditional on vintage,

AT—/ / xaffxa)dxda
3e(0p) = o [~ A(x(a) — Bp,a)fr(x(a) — Ap,a)da
-

where f;(x,a) is the ex-ante distribution of firm states for firms that last changed

8In the special case where idiosyncratic shocks follow a random walk, ¥(a) is constant and such a
one-to-one mapping exists. Alvarez et al. (2021) show how this mapping can be used to determine all
model primitives from the cross-sectional data alone.
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their price T periods ago. Vintage data is useful because this distribution of firms
states changes in a predicable, recursive manner across vintage. At T = 0, price
changers reset their price gaps according to policy function x = %(a). This provides

us the initial distribution of firm states fo(x,a):

So(x — x(a)) [, Ay/ )f(y,a)dy.

folber) = =1 1% A (g, @) (v, a)dy da

The numerator of this expression is the measure of firms setting new price gap %(a),
scaled by the overall measure of price changers.

Given the ex-post distribution of firm states for firms who last changed price
T — 1 periods ago, fr_1(x,a), we can apply new idiosyncratic shocks to get the ex-
ante distribution of firm states for those who last change price T periods ago, but
have not yet decided whether to change price today,

A

fr(x,a) = /_o:og(a\z)ff_l(x —z+4+m+a,z)dz,

and then apply the adjustment hazard function to find the ex-post distribution of
tirm states for firms who ultimately decide not to change their price, and now last

changed price T periods ago:

A

< < e
% T (1= Ay, ) foly, a)dy da

We know that firms with vintage T have been hit by 7 idiosyncratic shocks before

fr(x,a) =

choosing to change price. Differences in the distribution of price changes from one
vintage to the next are therefore informative about transition probabilities in the id-

iosyncratic state, which are exactly what is needed to identify the ideal price process.

3 Data Description and Facts

We now document properties of vintage-conditional distributions in the price quote
micro-data underlying the United Kingdom’s Consumer Price Index (CPI), collected
by the Office of National Statistics (ONS). We are particularly interested in vintage-
conditional hazard rates and variances, as these are the moments that are heuristically
informative about the persistence of idiosyncratic shocks. We document two facts.
First, in accord with previous work, hazard rates decrease in vintage. Second, and
less appreciated, the variance of price changes also broadly decreases in vintage, and

either does so monotonically or has a single peak in the 2 to 4 month range.

13



3.1 Data description and cleaning.

The UK CPI microdata are a rotating panel of price quotes collected monthly from
retailers across the country. Each observation contains characteristics about the retail
outlet being sampled from, the product being sampled, and the product’s price.” We
consider data collected between January 1996 and December 2019. From these data,
we want to extract price changes and their associated vintages.

In order to measure vintage, we need to follow the same product over time. ONS
data collectors are instructed to record prices for the exact same product over time
within a retailer, so we construct product identifiers from the data using product cate-
gories and retailer characteristics, and drop those that cannot be uniquely identified.
The ONS records when a product changes from one month to the next, including
changes in package size and quality substitutions. When substitutions occur, future
prices continue to be collected for the new (substitute) product. In such cases, we as-
sign all post-substitution prices to a new product identifier. We drop prices that fail
to satisfty ONS-validation procedures, as well as those associated with missing and
out of stock products. The remaining prices constitute our sample, which appears to
be representative as the year-over-year change in CPI constructed from our sample
closely tracks that of the official ONS release (See Figure B.1 in Appendix B).

We must also account for sales in the data. Sales make up a large portion of
changes in retailers’ prices, especially short term and small price changes (Nakamura
and Steinsson, 2008; Kehoe and Midrigan, 2015). We think that sales do not reflect
changes in a retailers’ ideal prices, so our theory is better suited to describe non-sale
or “regular” prices. We identify sales using two approaches. First, we use an ONS
variable that flags when a product is on sale or “recovering” from a sale. Second,
we apply a 3-month V-shaped filter as in Kehoe and Midrigan (2015). This filter
finds instances in which the price for a product falls, stays at some level for at most
3 months, and then rises back to the same level as prior to the initial decrease. We
flag prices satisfying either condition as “sale prices,” and replace these with the most
recent non-sale price to generate a panel of regular prices. After this, our final sample
contains about 23 million price quotes and 2 million regular price changes that span
1,285 product categories. Additional details about sample construction and summary
statistics can be found in Appendix B.

In this panel of regular prices, we determine vintage as follows. For each panel
unit, we assign a vintage of 1 to periods following a price change, and increment the

vintage by one every month until a price change occurs. As data are left censored,

For additional description of the data, including sampling procedure, methods of price collection,
and construction of weights, please refer to the ONS Consumer Price Indices Technical Manual (Office
of National Statistics, 2024).
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vintage is unknown prior to the first price change of each panel unit, and we do
not impute over gaps in the panel. Vintage is unknown for 867,250 price changes,
of which 736,208 are the first price change in a panel unit. Restricting our sample to
prices and price changes for which vintage is observed may result in selection toward
products that change prices more frequently. In Appendix B we report summary
statistics for price changes in the sample of all price changes and the restricted sample
of price changes where vintage is observed. In the restricted sample, price changes
are more frequent and are slightly smaller in absolute size. Overall, we do not think

selection on observing vintage is a major concern.

3.2 Vintage-conditional hazard rates.

We first examine vintage-conditional hazard rates. Figure 3 plots aggregate hazard
rates, which are constructed for each vintage by dividing the number of price change
observations by the number of price observations. We see that the aggregate hazard

rates decline in vintage, with spikes at regular four and twelve month intervals.
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Figure 3: Vintage-conditional aggregate hazard rates

This figure plots the vintage-conditional hazard rate against vintage. The size of each marker is proportional to the number of
observations at that vintage.

These aggregate statistics do not control for changes in the composition of prod-
ucts across vintage. If products exhibit heterogeneity in their frequency of price
change, composition bias across vintage could generate a declining profile in aggre-
gate hazard rates. To account for this, we calculate the vintage-conditional hazard
rate within each vintage-product category pair'’ and estimate the following relation-

10Product categories are defined according to an internal ONS classification system and correspond
roughly to COICOP micro-classes (6 digit categories).
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ship between vintage and hazard rate,
Ajr =aj+ BT+ 04Ty + 012T12 + U 7,

where A;; is the hazard rate for products in category j with vintage 7, the a; are
product category fixed effects, and 74 and Ty, are indicator variables taking value 1
when vintage is a multiple of 4 or 12, respectively. These indicators capture price
changes that occur at regular intervals, as seen in the aggregate data. Table 1 reports
the results.

(1) (2) 3)
A A A
b1 0.0105 0.0143
(0.00138) (0.00136)
51 0.0671 0.0840
(0.00326) (0.00325)
B -0.00192  -0.00274
(0.0000999)  (0.000100)
Fixed Effects  &pdan,  asory Crngosy
N 17172 17172 17172
R2 0.730 0.725 0.742

Standard errors in parentheses

Table 1: Vintage and hazard rate

The estimated coefficients on T are significant and negative, indicating that the
hazard rate declines in vintage on average across product categories. Not having
changed price for an additional month predicts, on average, a 0.3 percentage point
decrease in the probability of changing price in the current month.

In addition to the overall decline in the hazard rate with respect to vintage, we
also observe that prices change significantly more frequently at regular 4- and 12-
month intervals. In these data, Bunn and Ellis (2012a) show this behavior is almost
entirely confined to services producers. As labor is the primary input in service
industries, and most wage changes occur quarterly or annually, rather than monthly
(Grigsby et al., 2021) we interpret this behavior as reflecting a longer time between
firm-level cost shocks.!! When estimating the same model as above with the time
scale of vintage changed from every month to every 4 or 12 months, we find a similar
declining relationship between hazard rate and vintage. These results are reported in
Appendix C.2.

11 An alternative view is that firms price services using time-dependent rules, a la Taylor pricing.
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The regression above is restrictive in that it assumes product-level heterogeneity
is captured by a level shift, and assumes the relationship between vintage and hazard
rate is linear. To account for the former, we estimate a specification in which product-
level heterogeneity is captured by a shift in the log of hazard rate, rather than level.
Results are qualitatively similar to those above, and can be found in Appendix C.2.
To account for the latter, we estimate a specification with vintage-specific fixed effects

rather than a linear trend.

24
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Figure 4 plots the estimated p; coefficients. In addition to an overarching downward
trend and spikes every 4 and 12 months, we also see see that much of the decline

occurs at early vintages.
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Figure 4: Coefficients from fixed effects regression

This figure plots the estimated vintage fixed effects from the regression A = a; + YA Bl{t=t}+u j,r- Estimates are
plotted with relative to f; = 0. Bars represent a 95% confidence interval.

Overall, our findings here comport with the consensus established in previous
work. After controlling for product-level heterogeneity, the hazard rate is downward
sloping in vintage and most of the decrease comes in the first couple months (Naka-
mura and Steinsson, 2008; Cavallo and Rigobon, 2011; Campbell and Eden, 2014). We
also match the work of Bunn and Ellis (2012a), who measure hazard rates in these
same data, although their work focuses on how vintage-conditional hazard rates dif-
fer across broad product groups, while we focus on what is common across product

categories after removing heterogeneity.
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3.3 Vintage-conditional variances of price changes.

We now document the vintage-conditional variances of price changes. To our knowl-
edge, we are the first to give a rigorous examination to this statistic. To construct
these variances, we first standardize price changes for products i within each product
category j by subtracting the average price change within the category and dividing

by the standard deviation of price changes within the category: Ap; = %m.
ariapitl]

This standardization eliminates the aggregate variance changing scale across vin-
tage as the composition of products changes. In subsequent within product-category
analyses, this transformation has no effect. Figure 5 plots the aggregate variance of
standardized price changes against vintage. Similar to the hazard rates, we see that

the variance of price changes declines in vintage before leveling off.
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Figure 5: Vintage-conditional variances of price changes: aggregate

This figure plots the vintage-conditional variance of price changes against vintage. The size of each marker is proportional to
the number of observations at that vintage.

As before, we want to control for heterogeneity in the relationship between the

variance of price changes and vintage across product categories. To do so, we estimate
Var(Apylj, T) = aj + BT+ uj.

within each product category, where Var(Apy|j, T) is the variance of price changes
within product category j and vintage 7. Figure 6 plots a histogram of the estimated
B coefficients, along with those that are significantly different from 0 the 10% level.
While the estimated coefficients exhibit considerable heterogeneity across product
categories, the variance of price changes declines in vintage for the vast majority

of cases. B; is negative for 83% of product categories, and among the few product
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categories with a positive §;, only 8% are statistically different than zero at the 10%
level. Broadly speaking, the variance of price changes is greater at low vintages than

at high vintages.
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Figure 6: Estimated coefficients on vintage

This is a histogram of the estimated B; coefficients from the regression Var(Ap|j, T) = aj + ;T + uj.. Coefficients that are
significant at the 10% level are overlaid in grey.

This regression specification assumes a linear relationship between variance of
price changes and vintage, but the true relationship need not be linear, and indeed
need not be monotonic. It is difficult to discern how the variance of price changes
moves vintage-by-vintage within each product category, as some product-vintage
pairs contain few observations. So, for each product category j and vintage T we
pool price changes into two groups: those with a younger vintage (t < T) and those
with an older vintage (t > 7). For a given threshold vintage and product category,
if the variance of price changes is lower among the older vintages than among the
younger vintages, we say that the variance of price changes is “locally decreasing” at
that cutoff vintage. We define “locally increasing” analogously.

Figure 7 plots how often the variance of price changes locally decreasing, either
over thresholds within a product category (left panel) or over product categories
within a threshold (right panel).
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Figure 7: Prevalence of locally decreasing variance of price changes

The left panel is a histogram for which the variance of price changes is higher among vintages younger than T than among
vintages older than 7, where T is vintage on the x-axis.

From the left panel, we see that the variance of price changes is locally decreasing
for most vintages in most product categories. For 45% of product categories, the
variance is locally decreasing at every vintage. Conversely, only 15% of product
categories exhibit a locally increasing variance of price changes for 50% or more
vintages. From the right panel, we see that when the variance of price changes is
locally increasing, it is typically at early threshold vintages of 2 to 5 months. All
together, the variance of price changes is either monotonically decreasing in vintage,

or rising at low vintages before declining.

3.4 Unobserved heterogeneity.

The preceding analysis accounts for heterogeneity across product categories, which
roughly correspond to COICOP-6 categories. There is likely unobserved heterogene-
ity within product categories that we fail to control for. As stated earlier, we are pri-
marily concerned about unobserved firm types that generate composition bias across
vintage.

For each panel unit i in product category j, we observe N; price changes and
vintages. This allows us to construct an empirical distribution function (EDF) of
vintage for each unit. If these EDFs are identically distributed across every panel unit
within a product category, then unobserved heterogeneity is not an issue. Statistics
estimated within a product category can be interpreted as averages of those statistics
across panel units.

We lack the observations to test whether vintage EDFs are identically distributed
for any pair of panel units, so instead we test whether the EDF of each panel unit is
distributed identically to the pooled EDF of vintage for all other panel units within
a product category. In particular, we test whether the means of the two distributions
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and the variances of the two distributions are the same.'> We then drop panel units
for which either moment is significantly different at the 10% level. This removes
about 75% of panel units and 55% of price change observations.

We repeat the exercises above on this limited sample and report results in Ap-
pendix C.3. Our findings are mostly similar. The one major difference is that, with
the linear regression specification, we estimate that hazard rates are very slightly in-
creasing vintage. However, in the specification regressing hazard rates on vintage
fixed effects, we still find that the estimated fixed effects decline markedly in the
early vintages. We continue to estimate that the variances of price changes decline in

vintage for the vast majority of product categories.

Summary Overall, in the data both hazard rates and variances of price changes are
declining in vintage. Hazard rates decline especially in the first months following a
price change, and the variance of price changes either declines monotonically or ex-
hibits a peak around a vintage of 2 to 5 months before subsequently declining. This is
the case even after controlling for heterogeneity. In the simulations of Section 2, both
of these facts are produced when idiosyncratic shocks have a low persistence. We
therefore interpret these empirical patterns as suggestive evidence that the idiosyn-

cratic shocks faced by firms are transitory in nature.

4 Quantitative Model

Having documented the empirical behavior of vintage-conditional moments, we now
assess the quantitative importance of using them for model estimation. To do so,
we move to a simple general equilibrium setting. This is for for two reasons. First,
we want to assess the benefit of using these moments in a setting that more closely
mirrors a typical quantitative model used in the literature. Second, we want examine
what our estimation procedure implies about the welfare cost of inflation, and as

such need a setting where welfare is well defined.

4.1 Model setup.

The general equilibrium setup we use is essentially the canonical New Keynesian

model (Gali, 2015), but with nominal frictions in the form of random menu costs.'?

12We test mean and variance because the unit level EDFs are observationally exponential or sin-
gle peaked, and thus well-approximated by a negative binomial distribution. The negative binomial
distribution is defined by two parameters which can be identified from the first and second moments.

13Similar random menu cost settings have been studied by Dotsey et al. (1999); Costain and Nakov
(2011) and Dotsey and Wolman (2020).
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An infinitely-lived, representative household maximizes expected utility over con-

sumption and labor
oo

Z ,Bk (log(Ctyx) — “Lt+k)] ,

k=t

IE;

where C; is an composite consumption good and L; is labor supply. The composite

vl \ o1
good is a CES aggregate over individual differentiated goods C;;, C; = ( [C. di ,
where v is the elasticity of substitution. The household can purchase a one-period

bond B; at price Q;, and is subject to per-period budget constraints,
/Pitcitdi + QB = Wil + 11 + By,

where P;; are the prices of the individual goods, W; is the nominal wage and I1; is
remitted firm profits.
Taking the prices of individual goods and the wage as given, household optimality

conditions result in demand curves for individual products,

. -V 1/
Cit = <%) Ct, Pt = (/ Pl le) ,
t

and intratemporal optimality condition aC; = Vl\{f

There is a continuum of firms, each of which operates a technology linear in labor
to produce one individual product, Y;; = A;L;. Changing prices requires paying a
random menu cost x, measured in units of labor. Using the firm’s production function
and demand schedule, flow profits are

[Ty = PyYj — WiLiy — Wikt iy = (Pllt Y- % ) Py Cr — Wik Iy,

where [;; is an indicator variable taking value 1 when a firm changes its price.

Firms set prices to maximize the present value of real profits Il;/P; discounted at
rate . In the absence of menu costs, the firm’s static, profit maximizing ideal price
would be P; = Vvl 4.~ We can thus write the firm profit maximization problem in

terms of of ratios between set prices and ideal prices,

1—v —v
Ptk v—1 [ Py N
max BE; gl AVl = — - — Rip Ltk | |
{Pitsr} Z itk P1t+k v Pzt+k : l

where B = (-%5a4C)17VC and & = (-%5aC)"lax, and C is steady-state consumption.

'—“
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We assume that firms’ idiosyncratic productivity follows an AR(1) process in logs

log(Ajt) = plog(Ajs_1) +oeyr, €~ N(0,1)

and that menu costs are distributed exponentially with a mass point at 0.4

Ko k=0
1-— (1—K0)exp<—§) k>0

Finally, a monetary authority targets a constant rate of inflation, which manifests as

the nominal wage W; growing at a constant rate:
log(W;) = mt + log(W;_1).

When we write the firm value function in its recursive form, the relation to the styl-

ized model of Section 2 is plain to see. Defining X;; = P}é—f;l, we have

A
—7T /
% + max AV-1 (Lxl—v_X—u>+ﬁ]E{ (e XA )|x A”

X v—1

V(X, A,x) = max {A”l (lelv - XV) + BE [V (e A, K’) X, A} ,

log(A") = plog(A) +0e, €~ N(0,1), &~ H(k).

4.2 Calibration.

We calibrate this model to match features of the aggregate price data in the United
Kingdom. The firm pricing decision is determined by seven parameters. The first
two, {v, B} are governed by preferences and set to standard values of v = 4 and
B = 0.9612. We set 77 = .0017 to equal the observed average monthly inflation rate in
the UK from 1996 to 2019. The final four parameters, {p, o, A, k } are estimated within
the model by matching moments.

We compare two calibrations — one that targets moments from the cross-sectional
distribution of price changes, and one that targets vintage-conditional moments. For
the cross-sectional calibration, we target the frequency of price changes, the share of
price changes that are decreases, the average absolute price change, and the variance
of price changes. These are moments that have been used in the past to calibrate sim-

ilar sticky-price models (Nakamura and Steinsson, 2008; Costain and Nakov, 2011).15

14This assumption produces a hazard function that is approximately quadratic in the log price gap,
which is a good fit of the data (Alvarez et al., 2021; Gagliardone et al., 2025).

150ther candidate moments are percentiles of the price change distribution (Midrigan, 2011; Dotsey
and Wolman, 2020), and the kurtosis of price changes (Alvarez and Lippi, 2014).
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For the vintage-conditional calibration, we target the path of vintage-conditional haz-
ard rates and variances of price changes for vintages of 1 to 10 months.!® These
are the moments that heuristically identify the persistence of idiosyncratic produc-
tivity shocks, and contain information about the overall frequency and variance of
price changes. The parameters recovered by each calibration are reported in Table 2.
Each model’s fit to the targeted cross-sectional and vintage-conditional moments are

presented in Table 3 and Figure 8, respectively.

Parameter Description | 533 7E0n" C;ﬁ{:ﬁ%izn
v Elasticity of Substitution 4

B Discount factor (monthly) 0.9612

T Monthly trend inflation 0.0017

[y Autocorrelation of productivity shocks 94 24

o S.d. of innovation to productivity 18 13

A Average non-zero menu cost .52 25

K Probability of free price adjustment .003 .00

Table 2: Calibrated Parameters

The cross-sectional calibration recovers parameters that are typical of menu cost
models, although the standard deviation of shock innovations is somewhat high. In
comparison, the vintage calibration recovers a significantly lower autocorrelation of
idiosyncratic shocks, as well as smaller shock innovations and menu costs.

The low autocorrelation of shocks is needed to match the downward sloping pro-
files of the vintage moments, and the other parameters values follow from there.
When shocks are more transitory, it becomes less costly for a firm to keep the same
price in the face of a shock. In order to match the level of the vintage-conditional
hazard rates, it must also be less costly for a firm to change price in the face of a
shock, so menu costs must be lower on average. Similarly, smaller shock innovations

are needed to match the vintage-conditional variances.

Cross-Section ~ Vintage
Moment | Data  “Ciffbration Calibration

Freq of price changes | .088 .089 .099
Share of price decreases | .437 425 449
Avg absolute price change | .116 137 108
Var of price changes | .025 .023 016

Table 3: Cross-Sectional Moments

16For both sets of moments, we calculate aggregate statistics as follows. We first find the statistics
within each product category. Then we take medians across product categories. This aggregation
method follows Nakamura and Steinsson (2008).
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Figure 8: Vintage-Conditional Moments

These figures plot the model-implied profiles of vintage-conditional hazard rates (left) and vintage conditional variances
(right) for the model calibrated to cross-sectional moments and the model calibrated to vintage-conditional moments.

Although neither calibrated model matches the targeted moments exactly, both
fit the cross-sectional moments fairly well. However, the model calibrated to the
cross-sectional data fares poorly at matching the vintage-conditional moments. This
is unsurprising. From the simulations in Section 2.2, we saw that vintage moments
pin down the persistence of idiosyncratic shocks, and other parameters can be cho-
sen to match the cross-section of price changes given that persistence. Furthermore,
while vintage-conditional moments implicitly contain information about their cross-
sectional analogues, the reverse is not true.

On the other hand, it is surprising how well we are able to match the entire profiles
of vintage moments with only four free parameters, especially as menu cost models
typically have difficulty producing hazard rates that decline in vintage. Nakamura
and Steinsson (2008) examine the behavior of the hazard rates in a fixed menu cost
model where firms face both stationary idiosyncratic shocks and a non-stationary
aggregate shock. They find that hazard rates decline in vintage only when the the
variance of idiosyncratic shocks becomes unreasonably large, but perform this anal-
ysis assuming that of those idiosyncratic shocks are fairly persistent.!” We observe
that if the mean-reversion of idiosyncratic shocks is sufficiently low, we can match

hazard rates declining in vintage with reasonably sized shock innovations.

4.3 Welfare results.

Given that these calibration procedures recover different parameters, it is natural
to ask whether the model-implied costs of inflation differ as well. Our measure of

welfare loss is the percentage change in consumption needed equate the welfare of the

7The AR parameter of their productivity process is fixed at p = .66.
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household in the sticky-price economy to that of the household in a corresponding
flexible price economy. This is given by A such that

log((14 A)C) — aL =10g(Criex) — &L ey

where C and L are equilibrium consumption and labor supply.'® Note the lack of an
expectation operator, as there is no aggregate uncertainty.

For each set of parameters estimated above, we solve the model varying the trend
inflation rate, 7r, from 0% annually to 15% annually. We then compute the implied
A(7r) at each inflation rate. These are plotted in Figure 9.
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Figure 9: Welfare loss

This figure plots the model-implied welfare loss in consumption equivalent units at varying levels of steady-state inflation for
the model calibrated to match cross-section (CS) moments and the model calibrated to match vintage (V) moments.

We focus on two elements of this figure: the levels of welfare loss between the two
calibrations, and the slopes of welfare loss with respect to steady state inflation. It
is clear that when using parameters form the vintage calibration, the level of welfare
loss is both higher and increasing more quickly in steady state inflation.

At the common inflation target of 2%, the model-implied welfare cost of inflation
is 1.3 percentage points higher in the vintage calibration than in the cross-section
calibration. This is because idiosyncratic shocks are more temporary in the vintage
calibration. The incentive to change prices in response to temporary shocks is damp-
ened — firms are simply willing to tolerate larger price gaps, understanding that their

current state is likely to revert to the mean in the next period. As a result, price

18 An exact expression for A in terms of model primitives and the stead-state distribution of price
gaps can be found in Appendix A.3.

26



gaps are on average larger in the model calibrated to vintage, and the welfare cost of
inflation is greater.

This welfare cost increases about 4 times faster as steady state inflation rises in the
vintage calibration compared to the cross-section calibration. To contextualize this
difference in slopes, we consider a change in steady-state inflation from 2% to 8%,
roughly the same magnitude as the temporary inflation surge from 2018 to 2022. In
the vintage calibration, this change would imply an increase in welfare loss that is
0.28 percentage points greater than the increase in welfare loss implied by the cross-
section calibration.

Welfare loss in this economy comes from two sources. First, the gaps between
actual prices and ideal prices lead to misallocation of productive labor across firms.
The reduces the allocative efficiency of the economy compared to the flexible price
benchmark. Second, labor is spent on paying menu costs to change prices, rather
than producing goods for consumption. In Appendix C.5 we decompose welfare loss
into the contribution made by each of these channels. The majority of the difference
in our two calibrations stems from the allocative efficiency channel, rather than from

the labor paid to menu costs.

5 Validation with Cost Data

In the previous section, we show that estimating models using vintage conditional
moments implies a low autocorrelation of idiosyncratic shocks, which in turn leads
to higher welfare cost of inflation. This low persistence of shocks is somewhat sur-
prising, although not unprecedented.!” In this section, we exploit a unique dataset
which links firms’ costs, production, and prices to support this finding and validate
the use of vintage moments in estimation.

The data we use for this exercise is the price micro-data underlying the Belgian
producer price index (PPI), collected by Statbel, and linked with the Belgian PROD-
COM database, VAT declarations, and social security wages. This creates a monthly
panel of manufacturers’ prices, production, revenues, and costs. Although the PROD-

20 we are the

COM dataset has been studied previously in a similar context to ours,
first to link it with PPI prices. This allows us to estimate a stochastic process for ideal
prices using firm characteristics and cost data, and then compare the parameters of

that process to the ones recovered by our calibration procedure using only price data.

YFichenbaum et al. (2011) recover a Markov process for supermarket costs with a monthly autocor-
relation of under .2.
205ee Gagliardone et al. (2023, 2025).
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5.1 Data description and cleaning.

The PPI micro-price data contains monthly price quotes from February 2016 to Jan-
uary 2023, collected from Belgian manufacturing firms selling to the domestic market.
Price quotes are collected from wholesaler catalogs, online postings, and surveys sent
to firms. The sampling procedure is designed to be representative of total production
in each manufacturing product category. Products are followed at the barcode level,
and changes in product definition are flagged. We restrict our analysis to unchanged
products.

We construct price change and vintage variables in the same manner as for the
UK CPI data, excepting the lack of a sale filter, as sales are uncommon in business-
facing producer prices.?! In total, the sample consists of 8,687 products in 706 cate-
gories, with 414,828 price quote observations and 90,358 price change observations.
Of these, there are 298,810 price quote observations and 80,480 price change observa-
tions where vintage is observed.

Price quotes are linked to firms, identified by VAT declaration number. This allows
us to link prices with detailed information on firms’ real activity (sales and quantities
of production) from PRODCOM, and with firms’ costs from VAT declarations and
social security filings. Appendix B.3 provides more information about each of these
data sets and harmonization between them. All together, this gives us a monthly
panel of prices at the firm-product level, quantities and revenues at the firm-product

category level,?? and costs at the firm level.

5.2 Vintage conditional moments.

In this section, we document vintage-conditional moments in the PPI data. Figure
10 plots the aggregate hazard rates and variances of price changes against vintage.
Their profiles mirror the CPI data. Hazard rates decline in vintage, and variances of

price changes peak at a vintage of 2 before subsequently declining.

2l Applying a V-shaped sales filter to the PPI changes fewer than 1% of price quotes, compared to
over 8% of price quotes in the CPI data.

22Product categories are defined by 8-digit product codes, where the first 4 digits are the indus-
try. For example, industry 15.20 is “Manufacture of footwear,” and contains products codes for “
Town footwear with rubber or plastic uppers” (15.20.12.31), “Men’s sandals with leather uppers”
(15.20.13.62), “Women's sandals with leather uppers” (15.20.13.62), etc.
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Figure 10: Belgian aggregate vintage-conditional statistics

The left panel plots the vintage-conditional hazard rate against vintage The right panel plots the vintage-conditional variance
of price changes against vintage. The size of each marker is proportional to the number of observations at that vintage.

We cannot replicate all the results presented in Section 3 because there are far
fewer observations and panel units in the PPI price data than in the CPI data. How-
ever, because panel units remain in the PPI data for a long time, we can instead
perform exercises that fully control for unit-level heterogeneity. This completely elim-
inates concerns about unobserved heterogeneity.

For panel units with at least 20 price change observations, we estimate regressions
akin to those of Section 3, but with two differences. First, we estimate fixed effects and
random effects at the panel unit level rather than the product category level. Second,
we include an indicator variable for vintage T = 1. This is because some panel units
lack sufficient observations across all vintages, which makes estimating a linear trend
in vintage difficult. Results are reported in Appendix C.4, and comport well with
what we find in the CPI data. Declining hazard rates and variances of price changes
are robust across datasets. We therefore believe there is validity in comparing the
outcome of our model calibration in Section 4 to statistics estimated from the Belgian

cost data.

5.3 Estimating a process for costs.

As noted previously, in these data we have the rare benefit of observing firm costs,
production, and revenues in addition to prices. This makes it feasible to directly
estimate a stochastic process for firms” nominal marginal costs.

We assume all products i sold by firm f in product category j are produced using a
constant returns to scale technology with a common marginal cost. Marginal costs are
thus equal to average variable costs mc;r; = avcjr ;. We measure average variable cost
within a product category by assigning shares of observed firm level total variable

costs to product categories by revenue shares, and dividing by observed product
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category level quantity produced.??

This assumption stipulates that multi-product firms face the same supply funda-
mentals among all products in their portfolios. This is sensible insofar as a firm’s
production processes are common to all products it produces. As a robustness check,
we perform the estimation procedure below on a subsample of firms that manufac-
ture products in the same PRODCOM product category, and on a subsample of single
product firms.

We further assume nominal marginal cost can be written as

Mcif = &if + it + O + Kif tr
Kifp = Pift—k T Eifp,  Eifp ™~ N(0,0),

where &;s is product i’s steady state real marginal cost, J is an economy-wide cost
(supply) shock, 7t is the trend inflation rate, and w;s; is a product-level productivity
shock that follows an AR(1) process.

Substituting average variable costs for marginal cost, we can rewrite this as a

single equation in terms of observables.

avcigs = (1 —p)ais +pt+ (1 —p)mt + 6 — pdy—1 +paveis 1 + €
/ A/—/ E/—/

(.

Estimating this equation is more complex than it appears, due to our panel data
containing many more panel units than time periods. Rather than take a stand about
which identifying assumptions produce an estimator with finite sample properties
best suited to our particular setting, we instead take two simple OLS estimates of p
with known directional bias to produce bounds on p. We do so for each NACE 4-digit
manufacturing industry.

The lower bound is given by
avciy = o + P1pavcit—1 + O + Ejp-

This estimate for p is biased downward due to correlation between the estimated

tixed effect a; and the shock realization ¢;;. The upper bound is given by
avej = a + Ppavcis 1 + 0 + &y

This estimate for p is biased upward due to the exclusion of firm fixed effects. His-

tograms of these bounds are plotted in Figure 11. There is variation in both the level

23This is, in logs, avcir; = tvcr; — Fey + 1 ¢+ — gif+, Where tocs, is total variable cost, 7;¢ ; is revenues
, &S, AUCjf ¢ ft = E Tl djft £ , if,
in product category j, and gjr; is quantity produced in product category ;.
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and the tightness of bounds across industries. The median lower bound across in-
dustries is .27, while the median upper bound is .85 — we take these as benchmark

bounds for the aggregate economy.

AR(1) coefficient lower bounds AR(1) coefficient upper bounds

20 40

81 ] 35t
% 30
25+

20 -

10 - 1
al |
2+ 1 S5r _‘ 1
0 L1 \ ol ‘
0.6 08 1

0 02 04 : 0 02 04 06 0.8 1
AR(1) coefficient AR(1) coefficient

Number of NACE4 industries
>
|
|

Number of NACE4 industries

Figure 11: Estimated AR(1) coefficient bounds

The left panel plots a histogram of the estimated lower bounds for the AR coefficient of each Belgian NACE 4 manufacturing
industry. The right panel plots a histogram of the estimated upper bounds for those same AR coefficients.

For both calibrations of Section 4, the estimated autocorrelations of firm shocks
fall outside of these bounds. However, our estimate of p = .24 from the vintage
calibration is closer to the lower bound than our estimate of p = .95 from the cross-
section calibration is to the upper bound.

How do the autocorrelations of ideal prices implied by other sticky price models
compare to these bounds? In many cases, ideal prices are simply assumed to follow a
random walk. This is not reproduced in our data — a unit root is rejected in all indus-
tries. Among previously estimated firm pricing models that admit an AR(1) process
for ideal prices, estimates tend to be closer to the upper bounds. Golosov and Lucas
(2007) and Nakamura and Steinsson (2008) each calibrate a fixed menu cost model to
match features of cross-sectional distribution of price changes that underlie the US
CPIL They find AR coefficients of .58 and .7, respectively.?* Midrigan (2011) develops
a model designed to reproduce the large, temporary price changes associated with
sales. This is achieved by assuming a two-state (“normal” and “low cost”) Markov
process for marginal costs. His benchmark calibration results in an autocorrelation
of .40 for ideal prices, which toward the center of our bounds. Notably, though, his
setting is expressly concerned with matching the behavior of sales, whereas these

24Differences in estimates reflect the different moments used in the calibration strategies. Golosov
and Lucas (2007) match the frequency of price changes, average size of price increases, and variance
of new prices; Nakamura and Steinsson (2008) match the frequency of price changes, average absolute
size of price changes, and the share of price changes that are increases. The sensitivity of these
estimates the set of cross-sectional moments used further supports our position that cross-sectional
moments do not well identify the ideal price process.
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find evidence of temporary ideal price shocks even when examining regular prices.
Eichenbaum et al. (2011) use data on retailers’ prices, revenues, and costs to recover
a 3-state Markov process for marginal costs and a 12-state Markov process for ideal
prices in a fixed menu cost model with price plans. They recover a serial correla-
tion of .17 in ideal prices and of .14 in marginal costs when calibrating to match the
frequency and volatility of both cost changes and price changes.

Overall, even though the autocorrelation of idiosyncratic shocks recovered by our
vintage estimation seems low at first blush, it close to the bounds we estimate from
the firm cost data. At a minimum, our estimate is no less reasonable than assuming
ideal prices follow a random walk. Furthermore, we must note that our bounds are
on the autocorrelation of idiosyncratic shocks to firms’ costs. Fluctuations in firms’
ideal prices which determine, their price setting behavior, are likely also determined
by demand side factors that are not captured here. If shocks to firm-level costs are
in actuality quite persistent, then vintage-conditional moments suggest that other
components of the ideal price process are transitory, and play a large role in driving

tirms’ pricing behavior.

6 Conclusion

This paper argues that vintage-conditional moments should be matched when esti-
mating sticky-price models. We demonstrate in a simple example that these moments
identify the persistence of idiosyncratic shocks to firms’ ideal prices, and derive a
heuristic to determine whether those shocks are permanent or transitory. Using the
price micro-data underlying the UK CPI and Belgian PPI, we document that hazard
rates and variances of price changes decline in vintage, both of which indicate more
transitory idiosyncratic shocks. Compared to a random menu-cost model estimated
in the typical manner, the same model estimated to match vintage-conditional mo-
ments recovers a lower persistence of idiosyncratic shocks and a higher welfare cost
of inflation. Additionally, the cost of inflation rises significantly more quickly as infla-
tion rises. We validate the output of our estimation procedure using linked price and
cost data and confirm that the low persistence of idiosyncratic shocks is empirically
plausible.
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A Theoretical Results

A.1 Simple Example: Permanent vs Transitory Shocks

This presents proofs underlying the propositions given in Section 2.2.

Setup. Starting with the model presented in Section 2, we assume the following;:

e B=1,m7=0,and B =0.

e G(d|a) = @ (“’;P“).

¢ H(x) =1—exp(—£)-

Finally, we assume that we are either in a permanent shocks economy, where p = 1,
or a transitory shocks economy, where p = 0.

With these assumptions, the firm value function is

. 2 )
V(xjt, ait, k) = min {xit, Kit + min ¢ } )

The optimal reset price gap is clearly ¥ = 0, and we can then derive hazard function
2 X
A(xj,aip) = H(xj;) =1 —exp —i .
Proposition 3. Given data on the frequency of price changes, A, and the variance of price

changes Var(Ap):

e There exists unique {0y, K,} such that the frequency and variance of price changes

implied by the permanent shocks model exactly match these data.

e There exists unique {0y, K} such that the frequency and variance of price changes

implied by the transitory shocks model exactly match these data.
Proof. In the permanent shocks economy, the stationary distribution is defined by:
SN i TGS
folx) = e folw) +aox) [ (1= e ) fy )y

S _ )2
R B e VAT

By guessing and verifying, the following equations in terms of {c, K} satisfy these
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conditions:

00 2
~ CZ x
X) = ex —
=L o (o)
K(Uz+kz—1)
ko =
0 0/ i K+Uz+k1_1’

K
C C, Cc;, = J—
0= /—27_[ 1_21 i Ci 1\/K—|—0'2—|—ki_1

Given initial point kg = 0, we have that sequence {k;} is monotonically increasing
and bounded above by k = —“’4“2“'2_‘72, and that sequence {c;} is monotonically de-
creasing and bounded below by 0. This assures that all infinite sums are converging,
and that ¢( is determined by ¢ and K.

The model-implied distribution of price changes is

qp(Ap) = \/%CO (1- e*%)fp(AP)-

From this, the model-implied hazard rate and variance of price changes are

M= [ Mp@fpdx = [ (-3, (v

—00
2

(1- e%f)e_2<”2+ki> dx

iz0 Vo? tki /e
CiV 2T

. K(o2 + k;
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Var,(Ap) = (1—e3E)f,(Ap)dAp

3
§|>
LT
o

Ap2

/ Ap*(1—e 5 Je 2k dAp

K(O’Z-f-ki) )%
K+ 02+k;

e L[]8
ﬁ

cm/cf2
b ((o-2+ki>% ~(

06‘0

~.

;0% + cik; — K(e® + ki)
K+(72+k K+(72+k

CO’ + cik; — cjiq1k =
i+1 1+1> ZZO \/_Co

I
S|~ mlH

uMg WMg

Taking these together, in order to match data A, VE’(A p) we can set 0';% = }\VE‘(AP)
_ A . 2 .
and K, such that ¢p = “hn 8lven op. To see the existence of such a K, > 0, observe
that the condition on ¢y can be written, using the definitions above, as

A W SO
Var 0 Ve B Ve K+az+k
izl K
K+(72+kl

i

IX
—_
~.
|
o

The LHS of this expression is a strictly increasing continuous function, which is
0 for K = 0 and approaching infinity as K — oo. So, by the intermediate value the-
orem, for a given A € (0,1) there exists K, > 0 such that this equation is satisfied,
and this K, is unique. This gives us a unique {0y, K, } that rationalize the data in the

permanent shocks economy.

In the transitory shocks economy, the stationary distribution is defined by:

i) = & f(x,a) + do(x) [ (1 e 50)fity,a)dy

By guessing and verifying, the following equations in terms of {c, K} satisfy these
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conditions:

1 (x +a)>+a> x?
filx,a) = 202 &P <_ 202 2K

exp —”722 22
+50(X)—<2m272 ) (1 —y/ K4I—<02 exp(——Z(KJrUz)))

2 aZ
i) = yexp (- L)

2702
The model-implied distribution of price changes is

AZ

(1—e" 2K
wiap) = 1" [ fi-apa)
- K+2(72

From this, the model-implied hazard rate and variance of price changes are

A= //At (x)fi(x, a)da dx

2 1 - (x+a)%+a2
- /oo /oo(1 _67)27'((726 " da dx

Ap2
—e 21<

(1
Vari(Ap) = / Ap —/ fi(~=Ap,a)da dAp
1 \ K+202
/ Ap*(1—e”
Y K+2c72

_ o2 1- (K+202>

B _ /K
1 K+202

A2y

Eie )e 402 dAP

NG

Taking these together, in order to match data A, Var(Ap) we can set o? = %
_2(1-7)%07
and Kf = W ]

Proposition 4.

* In the permanent shocks model, the vintage-conditional hazard rate and the vintage-
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conditional variance of price changes are both monotonically increasing in vintage.

* In the transitory shocks model, the vintage-conditional hazard rate and the vintage-

conditional variance of price changes are both monotonically decreasing in vintage.

In the permanent shocks economy, as all firms reset to ¥ = 0, we have initial
distribution f},0(x) = do(x).
Applying the definitions of f,: and fp,T recursively for T > 1, we have

2 2

Y 2
e 2t PN e 207 _q+0%)

P O

with

> _ K(o? | +0?)
02 [ +02+K

The conditional distribution of price changes, conditional hazard rate and condi-

tional variance are:

o
(&) \/K + 02 +0? ” _Lpz) o 207 1407
qP/T p —= — e 2K = ,
\/K +02  +02—VK \/Zn(a,%fl +02)
K o2 402 K 3
Apr=1— . Vary.(Ap) = =L~ [1— 7.
p,T \/K_|_0-2 . + 0 2 p,T( P) )\T ( (K+ 0—2 1 _|_0—2) >

Observe first that o € [0, —W) and is monotonically increasing in T.

Given this, we have

3
aApT_i K 2>0
do? K\K+02 | +0?

2
oVary(Ap) (141 1 )
a2 2\ K+ a2 1+<72 K+(7 1+(72

-1
)% >0

NI

T—l + U (
Ar 2K'K+02 [ +02

Thus, Ay and Var, (Ap) are both monotonically increasing in 7.
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In the transitory shocks case, as all firms reset to X = 0, we have initial distribution

So(x)  €XP _% K a®
ft’O(x’a)zl—Oj - \/(271(272) (1_ I<+aze"p(_m>>'

K+20

Applying the definitions of f; and f; r recursively for T > 1, we have

_ep (—%[x ﬂ]ZT_L[izC])
ft/.[(x,a) = Wt \/m + (1 — ZUT) 2 /|Zr‘

A exp (—4[xa]S71[3]) exp (—4[xa]71[3])
frre(x,a) = wrq - + (1 —wr1) =
2714/ | 21| 27/ | 2]
with
o [ 2K+(r4+2)0?  _ Ki(t+1)e? 2K+ (T+2) 02
s _ Ko K+ (112)02 Kt (132)02 $ _ 2| Kz L
T7 K402 | _Kt(r+ho? K24 (t42)Ke? 40t | 7 FT 1 11’
K+(1+2)0? K24 (t+2)Ko?
K+0?
. — K—s—(H(-Tl)(ﬂ — (TZ(ZK—‘;- (T+2)0’2
T K+o? K ' K+(t+1)e?
K+(t+1)0? K+(t+2)02

The conditional distribution of price changes, conditional hazard rate and condi-

tional variance are:

Ap? - Azp2 Ap
(1 - eiﬁ) Wr—_1€ 2071 (1 — Wr— 1)6 2‘77

Gt (Ap) = +
/\t,'[ \/E \/W

K + 102
Atr =1 =Wy K+02 K+ (1+41)0 ~ W) K+02 02’

Var(Ap;t) = . (wT 10 (1 — (%0_1) ) + (1 — we_q)0? (1 — (K—I:a%)g)>

By differentiating A r and Var; - (Ap) with respect to T, we can algebraically show

NG

that both derivatives are negative for T > 1. Therefore, At and Var;-(Ap) are both
decreasing in T.

40



A.2 GE Model

Setup. From Section 4, in our quantitative model the consumer problem is

max E;
{Citsk LeakBeak}

i ,Bk (log(Ctyx) — D‘Lt+k)]

k=t
s.t. /PitCitdi + QtBt = WtLt + Ht + Bt—l

v=1 N\ o1
Cr = ( C,’ di)

B
c M
1
/\tpit = pttCt” Cit v
ﬁtoc = AtWt
MQr = Apa

This results in first order conditions

where A; is the Lagrange multiplier on the period t budget constraint, and y; is the
1

Lagrange multiplier on the consumption aggregator. Defining P; = ( |/ Pé‘”di) 1?
as the price of one unit of aggregate consumption, we have the following optimality
conditions:

=1

Wiy Ci  (Py\7" g PG
P !

= PG Qi Pr1Crp

There is a continuum of firms, each of which operates a technology linear in

labor to produce one individual product, Y;; = A;;Lj;. Firms face downward sloping
demand schedules from the consumer problem, Yj; = C;; = (%‘) - Ct..

Finally, a monetary authority targets a constant rate of inflation, which manifests

as the nominal wage W; growing at a constant rate:
log(W;) = 7t + log(W;_1).

Flexible prices. If firms prices are flexible and costless to adjust, they will change
every period to reflect movements in productivity and wages. The per-period profit
maximization problem is

max PitYit — WtLit
Pii‘/Lif

P\’
st. Y= ALy, Yu= |-+ Ct
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Substituting in constraints and differentiating with respect to P;; yields FOC

W,
(1—v)P; P{Ct + v

—v—1 .
2, i TG =0

and ideal price
x v Wt

BTy 1A,

The flexible price equilibrium given by the household and firms maximizing util-
ity and profits, respectively, the path of wages set by the monetary authority, and

labor market clearing.

1
Defining aggregate productivity A; = < f AV 1d1> ! , in the flexible price equilib-

1
1—v 1-v
P — / v W; Ji _ v W
v—1Ay v—1A;

rium we have

and

-V
Ct

L= [Stai= [ (F) S

" / A ( f) A
—v v—1 __ Ct

= A Ct/A =t = a=aL
t

These, coupled with the optimal intratemporal household condition, determine
steady-state labor supply and consumption in the flexible price model.

v—1_. . v—1
A, L =
v flex Py

Cflex =

where A is steady-state productivity, which is a primitive of the model pinned down

by the stationary distribution of Aj;.

Sticky prices If changing prices requires paying random menu cost x in labor, firms’

flow profits are

—P

W
[Ty = Py Yy — WiLiy — Wikl = (P1 ! ; it

it T AL )Ptyct — Wikt Ly,

where [j; is an indicator variable taking value 1 when a firm changes its price.

Firms then set prices to maximize real profits I1;/ P; discounted at rate 8. Defining

price deviations X;; = %, the firm problem becomes
it

42



max BIE;

Pittk =t

= 1 v1 v—1__ .
Z:B (A:/tJrk (thJrlI/c TXitik) - Kit+k1it+k>] ’

where B = C>7V(-%4)! 7V and & = (;%5C)" 1, and C is steady-state consumption.

The stick-price equilibrium is givne by the household and firms maximizing utility
and profits, respectively, the path of wages set by the monetary authority, and labor
market clearing, accounting for labor spent on paying menu costs.

In equilibrium, the outcome of the firm maximization problem generates station-
ary distribution over firms of F = (Xj, A;). We will use the notation dF(i) to denote
integrating over firms with respect to this distribution.

To contrast with the flexible price economy, we add hats to variables to denote
that they are outcomes of the sticky-price equilibrium. Note, however, that the path
of wages W; is the same between the two equilibria, as are ideal prices P}.

In the sticky-price equilibrium, we have
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where LI is labor spent on price changes. Coupling these with the intratemporal
household optimality condition, aC; = VIYT:/ pins down steady-state labor supply and

consumption in the sticky price model.
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A.3 Welfare loss measure

Our measure of welfare loss is the consumption equivalent units needed to equation
welfare in the sticky-price model with welfare in the analogous flexible price model.
This is given by A such that
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log((l - A)C) + al = log(cflex) - “iflex

This gives the following expression for A in terms of model primitives:

c _
— Jgexexp(ocL—ocLﬂex) 1
i —1 [ X VAV YdF(i —
_ A exp v—1 [ A (1?+“ch_v 1 .
[ X artar ()| v XY AT AE() v
1 1

B Data appendix

B.1 UK data: Additional details on sample construction

We begin with the sample of all locally collected price quotes from 1996 to 2023.
This sample does not cover the entirety of prices used to construct the CPI, as some
prices are “centrally collected.” These are typically for products that are either priced
nationally, primarily purchased online, or purchased through mail catalog. This in-
cludes products sold by large retailers with national presence. The prices are linked
over time panel, but we can reconstruct a panel identifier using provided information
on the sample location and product type. The sample location can be identified us-
ing variables ‘region’, ‘shop type’, and ‘shop id’. This is combined with the product
category variable, ‘item id’, to construct identifiers for panel units. For some shops,
multiple items within the same product category are sampled. In these cases, we
drop the observations which cannot be uniquely attributed to a panel unit.

Given this initial panel, we then create breaks in the data when there is a product
substitution, weight change, or quality change, as recorded by the ONS during data
collection. When such a substitution occurs, the ONS resamples the same, substituted
product in subsequent periods. We therefore assign a new panel id to all periods
following the break. This increases the number of panel units but does not change
the overall number of observations.

Finally, we drop observations that the ONS classifies as invalid, as well as those
that are missing, top coded, or have a price of less than 1 pence. The ONS validation
procedure is intended to eliminate errors in the hand collection of prices. In broad
strokes, it consists of double checking price observations that are unexpectedly large
or small, assuring that sampled item is exactly the same month to month, and flag-
ging internal inconsistencies or missing fields in collected data. More info in the ONS
Technical Manual (Office of National Statistics (2024)). The observations that remain

are the final sample of price quotes. With these, we follow ONS procedure to recon-
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struct the CPI index. Figure B.1 compares the official and and in-sample CPI. Table
B.1 reports the number of observations remaining through each step.

YoY change in CPI

T T T T T T
1995m1 2000m1 2005m1 2010m1 2015m1 2020m1
Date

Official CPI

Reconstructed CPI |

Figure B.1: UK CPI Inflation, Official vs Constructed

Initial number of price observations. .. 39,526,450
...removing without unique panel unit: 33,221,389
...removing invalid and missing: 31,431,675
...removing with missing price change: 23,099,634
...removing with missing vintage: 9,992,628

Table B.1: Number of observations

There are further refinements for the sample with price changes and sample with
price changes and vintage. In the sample with price changes, we drop observations
where the price change is missing, most of which are the first observations of panel
units, and we drop price changes that are greater than a factor of 10 on the grounds
that these are implausibly large. We also drop observations from after 2019. In the
sample with vintage, we simply drop observations for which vintage is unknown,
which correspond to the first price spell for each panel unit. Dimensions of the main
samples are reported in Table B.2.

Sample with price changes Sample with vintage

Number of price quotes 23,099,634 9,992,628
Number of price changes 2,085,261 1,215,488
Number of panel units 2,060,402 624,003
Number of product categories 1,285 1,285

Table B.2: Dimensions of UK data
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B.2 Summary statistics: price change and vintage

All price changes With vintage

Frequency of price changes .0903 121
Average price change .00844 .00955
Average abs price change 129 117
Variance of price changes .0391 0328
Kurtosis of price changes 8.65 9.21
Observations 2,085,261 1,215,488

Table B.3: UK Data Summary Statistics

B.3 Belgian data: Additional description of data sources

PRODCOM Data The PRODCOM survey, commissioned by Eurostat and admin-
istered in Belgium by the National Statistical Agency, is designed to cover at least
90% of production value within each NACE 4-digit manufacturing industry by sur-
veying all firms operating in the country with either at least 20 employees or total
revenue above 4.5 million euros. The sampling design assures that large firms (with
size over some industry-specific threshold) are always surveyed, while smaller firms
are selected at random.

Firms are required to disclose, on a monthly basis, product-specific physical quan-
tities of production sold (in volume, kg., m2, etc.) and the value of production sold (in
euros) for all their manufacturing products, which are defined by an 8-digit PROD-
COM product code.

We drop firms for which reported revenues in PRODCOM are less than 70% of
those disclosed to the VAT authority. This assures that our sample encompasses firms
whose primary activity is manufacturing, and therefore that the costs we measure are

primarily attributed to manufacturing activity.

PPI Data The PPI surveys firms on a monthly basis about the price set for the prod-
ucts sold in the last month. Its sampling strategy is similar to that of the PRODCOM
survey. The population of firms producing a good is stratified by size, such that larger
tirms are more likely to be sampled than smaller ones. Unlike PRODCOM, though,
the largest firms are not certain to be sampled, and conversely, smaller firms are more
likely to be sampled, compared to the PRODCOM survey. Also, firms are surveyed
about all products that are produced, so multi-product firms may be over-sampled.
Products are defined at the barcode level.

Prices are collected for products attributed to one of three markets: the domestic
market (Belgium), the non-domestic market (exports to the Euro Area), and the global
market (exports outside the Euro Area). We retain only prices for products sold to
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the domestic market. This is not costly in terms of observations, as relatively few
firms persistently export, and allows us to avoid concerns about differential demand
shocks and exchange rate variation driving price dynamics. In the lens of the model,
firms selling to the domestic market more plausibly have the same stochastic process
for ideal prices.

In cases where there is a continuous spell of missing price data, but the price
observations surrounding that spell take the same value, we impute the missing price
spell with that value. Also, as in the UK data, we exclude price changes that exceed
a factor of 10.

Wages and VAT declarations. To measure firm-level costs, we supplement our main
datasets with two additional sources: Social Security declarations filed with the De-
partment of Social Security of Belgium, and VAT declarations filed with the Federal
Public Service.

Social Security declarations contain information on employment and labor costs.
For our measure of variable labor costs, we use a wage concept devised by the social
security office that is intended to tightly follow production. This measure is equal to
total wage bill minus components that do not necessarily co-move with production
activity, such as holiday pay, waiting salary, reimbursements, and other pecuniary
benefits.

These data are quarterly, so to find monthly wages we divide the quarterly wage
bill equally across the three months of the quarter and assume an equal headcount
in each month. We view this assumption as innocuous in light of tight labor market
regulations in Belgium, such as restrictions on hiring or firing. Furthermore, manu-
facturing firms typically adjust short run labor force through contracts with tempo-
rary employment agencies, rather than through direct hiring. In such a contracting
setup, expenses on temporary workers’ wages will be measured as a component of
the monthly VAT declaration of the manufacturing firm as a payment to the employ-
ment agency.

VAT declarations contain firm-level information on total revenues and on pur-
chases of raw materials and other goods and services that are VAT-liable. These
include both domestic and international transactions. Firms are required to submit
this information on a monthly basis, except for those with an annual turnover of un-
der 2.5 million euros (excluding VAT), which are permitted to submit on a quarterly
basis.

Both datasets cover the universe of Belgian firms, and the only restriction we
make is to exclude the firms which file VAT on a quarterly rather than a monthly
basis. Given the the stratified sampling strategy of PRODCOM, this has little impact

on the composition of our sample. We sum the wage bill with intermediate purchases
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to generate total variable costs, and adjust this value by the ratio of reported revenues
in VAT and PRODCOM.

C Supplemental figures and tables
C.1 Theory and simulation: supplemental figures

Profiles of vintage-conditional hazard rates
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Figure C.1: Profiles of vintage-conditional hazard rates
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o Simulated profiles of hazard rates
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Figure C.2: Hazard rates

C.2 UK CPI: supplemental figures and tables

(1) (2)

Wehi Ajx
T -0.00584  -0.0134
(0.000307)  (0.000944)
Fixed Effects ~ Soduct  Dioduct
Aggregation Quarterly = Annual
N 6308 2266
R? 0.854 0.855

Standard errors in parentheses

Table C.1: Vintage vs hazard rate, alternate time aggregation
C.3 UK CPI: controlling for unobserved heterogeneity

Original sample (with vintage) Adjusted for heterogeneity

Average price change .00955 0119
Average abs price change 117 106
Variance of price changes .0328 0284
Kurtosis of price changes 9.21 10.22

Observations 1,215,488 555,416

Table C.2: Summary Statistics - removing unobserved heterogeneity
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(1) (2 (3)

Ajx Aix Ajx
(7 0.0177 0.0162
(0.00200) (0.00201)
(0.00496) (0.00506)
T 0.00240 0.00121
(0.000174) (0.000176)
N 10822 10822 10822
R? 0.699 0.682 0.700

Standard errors in parentheses

Table C.3: Vintage and hazard rate - no heterogeneity

Frequency
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Coefficient on vintage (grey: significant at 10% level)

Figure C.3: Coefficients of variance vs vintage
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Figure C.4: Prevalence of variance decreasing in vintage

C.4 Belgian PPI: supplemental figures and tables

(1) (2) 3) 4)
Ai,‘r /\i,T /\i,T /\i,r
T3 -0.0599 -0.0578
(0.00421) (0.00416)
T12 -0.0295 0.0278
(0.0282) (0.0285)
T -0.00841 -0.00778
(0.000822)  (0.000823)
1{r=1} 0.0941
(0.00667)
N 4865 4865 4865 2308
R2 0.908 0.905 0.910 0.845

Standard errors in parentheses

Table C.4: Vintage and hazard rate - within panel unit
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Number of panel units

C5

Productivity relative to flex-price
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Figure C.5: Vintage and variance of price changes - within panel unit

Additional figures from Calibrated Model
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Figure C.6: Decomposition - sources of welfare loss
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